Engendering an Empathy for Software Engineering

Katherine Shaw and Julian Dermoudy

School of Computing
University of Tasmania
Private Bag 100, Hobart, Tasmania 7001

Julian.Dermoudy@utas.edu.au

Abstract

Students have little empathy for the fundamentals of
Software Engineering practice when it is first introduced.
The current method of teaching this topic involves the
presentation of curriculum material through lectures.
Whilst being an effective method of teaching this
information, it does not provide students with enough
opportunity to develop an interest in, and an
understanding of, the subject.

To engage students in this area and to provide them with a
deeper understanding of the issues involved in software
development, an interactive, web-based, graphical
simulation game of the software development process was
created. This simulator allows students to take the role of
the project manager developing a hypothetical software
product in an environment that is both graphical and
entertaining.

Keywords: Software Engineering Education, Experiential
Learning, Simulation.

1 Introduction

In general, it can be said that students have little empathy
for, or affinity with, the fundamentals of Software
Engineering practice. This is an important issue to
consider. Unless students are motivated to want to
engineer software, it will be difficult to convince them
that the methods and techniques taught can be effective,
and they will not utilise them properly once they enter
employment (Briggs, 1994).

The current method of exposure is via lectures; this does
not provide students with enough opportunity to develop
an interest in, nor an understanding of, the subject.
Although lectures are effective methods of teaching
information, they can be quite ineffective for stimulating
higher-order thinking and cannot be relied upon to inspire
or to change students’ attitudes favourably (Biggs, 1999).
The educational environment also has limitations that
prevent students from experiencing the full range of
problems that are encountered in the real world (Dawson,
2000).

Copyright (c) 2005, Australian Computer Society, Inc. This
paper appeared at the Australasian Computing Education
Conference 2005, Newcastle, Australia. Conferences in
Research and Practice in Information Technology, Vol. 42.
Alison Young and Denise Tolhurst, Eds. Reproduction for
academic, not-for profit purposes-permitted.-provided this text is
included.

Thus it is desirable to investigate methods to engage
students in this area and to provide them with a deeper
understanding of the issues involved in the software
development process. We present a simulation game of
two software development life cycles that allows students
to gain experience of managing a software development
project in an environment that is both graphical and
entertaining. The simulator is completely functional and
is implemented in Java.

The purpose is to investigate the effects of providing
students with experiential learning of the software
development process. The investigation aims to
determine if the use of an educational software process
game will enable students to gain a greater understanding
and appreciation of the software development process,
and finally, whether students will enjoy learning through
the use of this tool.

To present our case, we start by introducing the context
for the work: software development life cycles,
experiential learning, motivation theory, discrete-event
simulation, and related work. We then present the
implementation of the simulator and the results of the
evaluation. Finally, we conclude and offer some thoughts
on future work.

2 Context

2.1 Software Development Life Cycles

The primary purposes of software development models
are to define the stages comprising software development
— and the order in which these stages should be
undertaken — and also to establish the transition criteria
that allow progression from one stage to the next (Boehm,
1988). A defined software process also provides other
benefits including (Humphrey, 1995):

+ enabling effective communication amongst
stakeholders;

« facilitating process
improvement; and

* assisting process management.

reuse, evolution and

There are various software process models and life cycles
available to define the software development process. In
the simulator introduced here, two life cycle models will
be examined: the waterfall life cycle model (which was
the first formal model to be created for guiding the
software process), and the spiral model (a more
contemporary software process model that incorporates
the ideas of prototyping and risk management). An
overview of each of these will now be presented.

www.manaraa.com

2.1.1 The Waterfall Life Cycle Model

The waterfall life cycle model is so named because the
stages of the model are depicted as cascading from one to
another — each development stage is completed before
the next is commenced (Pfleeger, 1998). For example, in
the waterfall model all the design work involved in the
project must be undertaken in the early stages of the
project, which is then followed by all of the work on
coding.

The waterfall life cycle model also incorporates
validation (ensuring that the software will meet customer
requirements) and verification (making sure that it is
functionally correct) into the software development
process. The broad stages of the waterfall life cycle
model are analysis, design, coding, testing, and
integration.

2.1.2 The Spiral Life Cycle Model

The spiral life cycle model was developed by Boehm
(1988) and combines development activities with risk
management activities in an iterative process, in which
each iteration resembles the waterfall life cycle model.
Prior to the development of each iterative prototype, risk
analysis weighs different alternatives with regard to the
requirements and constraints on the project (Pfleeger,
1998).

2.2 Education — Learning, Motivation, and
Simulation
2.2.1 Experiential Learning

The foundation of experiential learning lies in the concept
that immediate personal experience is the focal point for
learning. The theory of experiential learning defines
learning as the process whereby knowledge is created
through the transformation of experience (Kolb, 1984).
The four stages of the experiential learning cycle are
(Boud, Keogh, and Walker, 1985):

* abstract conceptualisation;
 active experimentation;

» concrete experience; and

« reflective observation.

Two aspects of this cycle are of particular importance to
teaching: the emphasis on concrete and subjective
experience as the heart of learning, and the premise that
experiences are translated into concepts through
observation and reflection. The model illustrates the need
to place an emphasis on concrete experiences in
education as a significant aspect of learning, and the
requirement for promoting reflection to enable students to
extract specific learning from the overall experience.

2.2.2 Motivation

Motivation theory states that if a person is to engage in an
activity, they need to expect some valued outcome
(Kolesnik, 1978). People learn more effectively, and with
greater enjoyment, if learning is important to their
immediate lives.

The importance of a task arises from four aspects: the
value placed on the process, on the product, on what the
product earns, and on what other people value. The
motivations arising from the importance are: intrinsic
motivation, achievement motivation, extrinsic motivation,
and social motivation respectively (Biggs and Moore,
1993).

Intrinsic motivation comes from within; involvement in a
task is derived from interest in the task or activity itself,
rather than the outcome of the activity (Biggs and Moore,
1993). Intrinsic motivation can be created through
interest, enjoyment or fun, and/or through personal
consequences. Rather than influence the students to learn
through competition, assessment, or collaborative
learning, we are interested in stimulating the individual to
learn deeply. Hence, our work attempts to increase
intrinsic motivation.

2.2.3 Simulation

The primary motivation behind using simulation is that it
allows experimentation with a system that would not be
possible in the real world. The likely cost of
implementing changes, potential consequences or even
danger that could result from experimenting with a real
system make simulation an attractive approach (Seila,
1995).

In modeling a system, there are two main paradigms
available. Time can be represented either as a continuous
variable or as a discrete variable (Seila, 1995). These two
approaches are known as continuous simulation and
discrete-event simulation respectively.

Discrete-event simulation models are those in which the
state of a system is considered to change only due to the
occurrence of events. Therefore a discrete-event
simulation is one in which the system state changes at a
set of discrete, and possibly random, simulated time
points (Schriber and Brunner, 1998). This is appropriate
for modeling the development of software artefacts.

2.3 Current Approaches to Teaching Software
Development Life Cycles

2.3.1

As noted by McCauley and Jackson (1998), the
importance of an undergraduate course in the preparation
of software engineers has been recognised for many
years. In particular, an early and consistent emphasis on
software engineering concepts creates students who value
the principles and practices of Software Engineering. It is
therefore important to establish how the software
development process should be taught.

Introduction

The software development process has a number of
characteristics that are difficult to teach with traditional
methods (Oh and Van der Hoek, 2001a). These include
that:

+ software development is non-linear — activities,
tasks and phases are repeated and can occur
simultaneously;

www.manaraa.com

» software development involves several intermediate
steps and continuous choices between multiple,
viable alternatives — difficult decisions must be
made, tradeoffs must be considered, and
unanticipated events and conflicts must be handled;

+ software development may exhibit dramatic effects

with non-obvious causes — there are several
common situations in which the cause is not very
apparent;

+ software engineering involves multiple stakeholders
— decisions are made by many people; and

+ software engineering often has multiple, conflicting
goals — tradeoffs between aspects such as quality
versus cost, timeliness versus thoroughness, or
reliability versus performance (Oh and Van der
Hoek, 2001a).

In the remainder of this section we consider alternative
interactive mechanisms for teaching software
development life cycles.

2.3.2 Role-Playing

As a teaching method, role-playing involves the use of
scripts to assign specific identities in a system to students,
who then interact to perform their designated roles in the
system. It is a natural and effective way to introduce and
expand upon many concepts in Computer Science.

In the exercise developed by Barrett (1997), a set of
fourteen scripts, including those for six end users and six
customers, are utilised to provide guidance for students
role-playing the clients involved in the requirements
gathering of a hypothetical system. It is the responsibility
of the student assigned to a particular role to ensure that
their system needs, guided by the scripts, are expressed
during the session. Other students assume the roles of
developers, such as the systems analyst. To allow the
students to experience a real-life situation, the scripts
have conflicting, ambiguous and incomplete
requirements. The group must discuss and resolve
problems to produce a reasonable set of requirements for
the system. This technique has been used with success in
an undergraduate Software Engineering class, both as an
educational activity and an enjoyable diversion from the
normal teaching routine.

Cope and Horan (1996) utilised a similar method in
which the students role-played the systems analysts. The
role of the client was assumed by a person outside the
course in which the exercise was conducted. To enhance
the realism and authenticity of the activity, a (previously
completed) real project was utilised as the basis. Initially,
the role-play begins with the client explaining the
background of the project to all students, and students are
divided into teams. Two further opportunities to question
the client are presented in subsequent weeks, after which
students develop a requirements document. The authors’
evaluation of this utilisation of the role-played case
determined that it provides students with a learning
context conducive to conceptually significant learning
(Cope and Horan, 1996).

Although incorporated into a series of larger group
projects, Polack-Wahl (1999) also utilised students role-

playing as the clients in systems development. This
experience enabled the students to gain a valuable first-
hand insight into the viewpoint of clients, and in
particular their frustration when systems developers did
not listen to their requirements.

The experiential learning involved in role-plays provides
students with considerable benefits. These experiences
can provide students with a deeper understanding of the
processes covered (Simsarian, 2003), and seem to have a
considerable and lasting effect (Andrianoff and Levine,
2002). It also allows the exploration of possibilities and
alternatives that may not be available in the real world —
and without the associated consequences. For example,
allowing students to role play a client’s role enables them
to obtain first-hand insight into a client’s viewpoint,
which would not ordinarily be possible in the real world
(Polack-Wahl, 1999).

2.3.3 Live-Thru Case Histories

Live-thru case histories are a teaching method developed
by Bernstein and Klappholz (2003) specifically to
enhance students’ appreciation for the software
development process. It was developed as a result of the
failure of other methods of teaching. The authors found
that discussing failed case histories and having the
students read similar case studies only caused the students
to recognise the oversights and mistakes of others.

One of the main advantages of live-thru case histories is
that it is a very powerful experiential learning tool
(Bernstein and Klappholz, 2001). Students internalise the
need for the software process and their attitudes towards
customer interaction and the developer’s responsibility
towards customers, the success of the software product
and requirements engineering change dramatically
(Bernstein and Klappholz, 2003).

Live-thru case histories, however, have several
limitations. Regardless of the implementation chosen,
live-thru case histories are extremely time consuming.
Also, despite the fact that they can be scaled down to
accommodate less experienced students, this method
requires the development of actual software process
artefacts and therefore may still be unsuitable for first
year students.

2.3.4 Coursework

In addition to the inclusion of Software Engineering
concepts into laboratory exercises as undertaken by
Robergé and Suriano (1994), another way of integrating
software process principles and practices into a
curriculum is through their use in coursework tools.
Morell and Middleton (2001) utilise a web-based
environment to reinforce the importance of software
development concepts. This tool, named SELF (Software
Engineering Learning Facility), is made up of three main
parts, one of which is the process component. This part
guides students through the waterfall model of software
development.

Incorporating software process activities into a
competitive situation, such as assignments, also provides

www.manaraa.com

a high degree of achievement motivation to students. It
can also provide significant motivation to weaker
students. For example, when requiring students to
develop test sets as part of an assignment, Goldwasser
(2002) found that even students who were struggling with
their own implementation enjoyed and felt fully included
in developing their own test sets.

2.3.5 Games and Simulators

Adventure games enjoy enormous popularity amongst
Computer Science students, and therefore are a natural
way to motivate them. Players enjoy the games’ stories
and interfaces, are challenged by the tasks and can also
learn from gaming (Ju and Wagner, 1997). Therefore it is
not surprising that they are being incorporated into
Computer Science courses as learning environments.

The other main category of computer game suitable for
educational purposes is simulation. Sharp and Hall (2000)
simulated a software house called Open Software
Solutions (OSS) to provide students with interactive
software engineering case studies. The simulation
environment consists of the OSS office building, with
each project having one floor; the student ‘joins’ the
company as a member of one of these project teams. Each
project office contains everything the user will need to
complete the project tasks: the simulated project manager
(who provides guidance and feedback), items such as
books and videos (which can be opened and played
respectively), and other resources including prototype
systems, simulations, and access to meetings (Sharp and
Hall, 2000).

From informal feedback, the authors note that the
environment appears to be viewed favourably by
students, who find it both engaging and easy to use.

Drappa and Ludewig (2000) developed a simulation
entitled SESAM (Software Engineering Simulation by
Animated Models) to teach Software Engineering
principles and practices. The student takes on the role of
the project manager, and controls the simulation through
a textual interface. To manage the simulated project, the
player is able to hire team members, assign tasks to the
team members, control the progress of the project, and
utilise other management functions (Mandl-Striegnitz,
2001).

The player’s aim in this simulation game is to complete
the software project successfully. When the project is
completed, the student is able to analyse his or her
performance using an analysis tool, which displays the
internal variables of the simulation in a graphical format.
This enables students to understand the overall project
results as a consequence of their actions and management
decisions (Mandl-Striegnitz, Drappa and Lichter, 1998).

The authors report that the SESAM project has been very
successful so far: analysing the improvement in the
performance of students from their first and second
simulations shows that most are learning from their
mistakes.

The main limitation of computer simulations and
adventure games is that there have to be considerable

tradeoffs between the fun and the educational value
provided by the game (Oh and Van der Hoek, 2001b). It
is also vital to achieve a harmony between the level of
challenge offered and the level of skill required: low
challenge, high skill games result in boredom, and high
challenge, low skill games in anxiety (Carswell and
Benyon, 1996).

Drappa and Ludewig (2000) also noted that in some
cases, whilst the simulation game enhanced students’
motivation it did not improve either their learning or their
skills. This is likely to have been due to the fact that the
simulation did not provide students with sufficient
feedback to allow them to reflect on, and learn from their
experiences. As with role-playing, this method also
requires the active participation of students to succeed.

3 Implementation

3.1 Scope

The goal of our simulator, entititled SimjavaSP, is for the
student, acting as the project manager, to develop a
software project within the required time and budget, and
of acceptable quality. This will require students to
optimise the three factors of time, expenditure and quality
in parallel.

In SimjavaSP, there is no tutor or help functions to
support either project planning or decision making. This
design ensures that educational objectives are achieved.
As noted by Mandl-Streignitz, Drappa and Lichter
(1998), the educational success of a training environment
strongly depends upon the fact that the student is not
guided by the system. Rather, as in real software projects,
the project manager is entirely responsible for planning,
staffing, directing, and controlling. In this way students
are forced to manage the project on their own, and will
therefore perceive the project outcomes as a direct result
of their own decisions.

This allows the focus to be taken off the project
deliverables and to be placed on the process. By allowing
the player to manage all aspects of the project, they will
be gaining valuable first-hand experience of project
management without the need to develop actual project
deliverables. This makes it innately suitable for first-year
students.

3.2 Design

3.2.1 Functionality

Developers are the core of the software development
model created for SimjavaSP. Like real software
developers, they have individual personalities and
abilities, which influence the way that they work on
software development tasks.

Projects in the simulation game are modeled as being a
collection of activities necessary to develop a software
product. Projects define the attributes of the software
product and the process by which it is produced.

www.manaraa.com

Properties of software development projects that should
be measured in a simulation include cost, defect level,
duration, and size (Wickenberg and Davidsson, 2002).

Activities can be defined as software development tasks
in which documents (or code) are produced or improved
(Drappa and Ludewig, 2000). In a typical software
development process, tasks that must be performed
include requirements analysis, architecture development,
detailed design, implementation (code and unit testing),
integration, and system testing (Rus and Collofello,
1999).

There are many problems and difficult situations that
students may encounter in the real world of software
development. Amongst the ‘dirty tricks’ that Dawson
(2000) recommends for use in student software project
developments, the following adverse external events have
been implemented in the simulation game:

+ crashed hardware or software — effectively
destroying the hardware or software of one
developer so that more must be purchased;

+ disrupted files — deleting some of the project
work;

» changed requirements or new feature requests —
simulating the client asking for more features after
the project has commenced;

+ developer quits;

* developer becomes ill — simulating a developer
becoming prevented from working for a period of
time; and

+ schedule moved back — the deadline for the project
is shortened.

Additionally, the following beneficial events have been
implemented:

+ relevant experience — simulating the developers
having experience from working on similar
projects, increasing their productivity;

» effective working environment — simulating a
working environment in which developers will
spend more time working and less time drinking
coffee;

* case tools or reusable code — allowing a portion of
the code to be generated automatically;

* increase in budget — simulating an increase in the
amount of money available to develop the product;
and

+ extended schedule — providing the project
manager with more time to complete the project.

3.2.2 Feedback

One of the limitations of previous software process
simulators is that they have provided little feedback to
students whilst the simulation is running. For example, an
issue with SESAM noted by its developers Drappa and
Ludewig (2000) is that it appears that students who fail at
the project development are unable to understand the
reasons why.

The interface for SimjavaSP has a combination of
graphical and textual feedback. This makes it easier for
studentsptopassessycause=and=effectyingthe game, as they

receive continual feedback as the project progresses. The
continual feedback includes an animated ‘company
office’ (see Figure 1), which allows the student to observe
their developers at work, and therefore allows both short
and long-term cause-and-effect to be more easily
illustrated in the simulation (Oh, 2002).

3.3 Choices

3.3.1 Discrete-Event Simulation

It was decided to implement SimjavaSP using the
discrete-event paradigm for several reasons. Firstly,
discrete-event simulation is able to capture details and
complex interactions of systems, which makes it
inherently suitable for modelling the complex process of
software development. For instance, as stated above, the
software development process is non-linear, and can
involve random factors such as human behaviour and
technological advances (Oh and Van der Hoek, 2001a). It
would be extremely difficult to model such behaviour in a
continuous system using differential equations, and
therefore discrete-event simulation with its ability to
represent individual behaviour and random occurrences is
more suitable.

It is also important to include the commercial realities of
software development in a simulation of the software
development process. This may include problems and
difficult situations such as the client changing the
requirements after commencing the project, or project
work being lost due to a software or hardware crash
(Dawson, 2000). Stochastic events such as these are only
able to be represented in a simulation that uses the
discrete-event paradigm.

@ applet Viewer: SoftwareProcess2.class

| U | Restart |

T I ; J]
o o A o f e

Lugy

/- z
he projectyou will be developing

A
o
Personality [Train
has the following speciications:
4) \
A

N o« IS Bro] o so0

INum Reguirements: 20
24 Document 15 Ihime:s00

[Budget §60000

Max Errors: 60

A analysis 15 Coding
Design 20 Testing 56

[Kita ~] | ~| [Haraware ~]

Assign 10:You hired a developer: Kiki
0: You hired a developer. Mike
0: You hired & developer. Charlie
9 Development Stages Money [[wtow 0: You hired a developer: Lucy
[Analysis _ 10 You have ealled a meeting -
[Design S [y INow waiting for the developers to arrive.
[3 cosing Time [e20n |
[Testing — i % of Time on V&Y
=13
[pativery Call Meeting 126 51 76 e ||

Applet started.

Figure 1. The Graphical User Interface of SimjavaSP
Showing the Start of a Typical Game.

Finally, the decision to make SimjavaSP a simulation
game implies that it will allow players to interact with the
simulation whilst it is running. This leads to the
conclusion that players will be influencing the operation
of the simulation through their actions. These are
effectively external stochastic events. Once again, the
need to be able to represent discrete, ‘random’ events
leads to the choice of discrete-event simulation to
implement SimjavaSP.

www.manaraa.com

3.3.2 Simjava

Simjava (Howell and McNab, 1998) is a process-based
discrete-event simulation package for Java. It is based on
the HASE++ simulation package for C++, and was
developed at the University of Edinburgh.

It makes use of entities each running in their own thread
to run the simulation. The entities send and receive events
to communicate with one another. A central system class
is responsible for controlling all the entities, advancing
the simulation time and delivering events (Howell and
McNab, 1998).

Simjava was selected over other evaluated simulation
packages as the basis for SimjavaSP due to the fact that it
possesses features that make it more suitable as a base for
creating a game. In particular, Simjava includes facilities
for representing simulation objects as animated icons, and
therefore provides the basis for graphics in a game
(Howell and McNab, 1998). The animation produced has
the further benefit of being created in a Java applet,
which can be easily integrated into a web page for use on
the Internet.

4 The Students’ Experience

4.1 Interactivity and Observation

In addition to an animated ‘company office’ that allows
the player to observe their developers at work, SimjavaSP
continuously shows the project’s status. This allows both
short and long-term cause-and-effect to be more easily
illustrated in the simulation. For instance, a student might
notice that the project is behind schedule and decide to
correct this by hiring as many developers as possible.
This will have the immediate effect of causing the project
budget to decrease faster, as well as causing increased
communication between developers trying to coordinate
their development efforts. In the long term, this may in
fact adversely impact the project. It is likely that the large
number of developers may cause all the money to be
spent too soon. Additionally the drop in productivity, due
to the increase in communication overheads and
introduction of developers who are new to the project,
may in fact cause the project to be late.

The animated view of the developers and continuously
monitored project variables provide immediate feedback
to the students, which should allow them to see the cause-
and-effect of their actions more easily. In a more simple
example, the animated company office allows the student
to see which of their employees are doing useful work, as
those that are idle will spend their time away from their
desks at the coffee machine.

The simulator has also been created so that the student
can take a very active role as the project manager, to
improve on the passive simulation created by Merrill and
Collofello (1997). Throughout the project development,
the student has absolute control over the developers, and
can perform tasks such as hiring or firing them at any
time. The student is also responsible for assigning
developers to software development tasks, monitoring the

project’s size, budget and time, calling progress meetings,
and ensuring that the project is of high enough quality.

4.2 Fun

Malone’s (1980) guidelines for making instructional
computer games fun have been incorporated into the
implementation of SimjavaSP. Firstly, SimjavaSP
achieves the quality of challenge by providing the student
with the goal of developing an imaginary software
project. The successful attainment of this goal is by no
means certain.

Intrinsic fantasy occurs in SimjavaSP through the nature
of the game itself: the player is engaged in the fantasy of
managing the development of an imaginary software
product. This fantasy is intrinsic as the problems are
presented in the terms of the elements of the fantasy
world: the imaginary software office and the tasks the
player is asked to perform both affect each other.

Finally, in SimjavaSP sensory curiosity is provided
through the animated ‘company office’. Cognitive
curiosity on the other hand is stimulated by not providing
complete information to the user about certain aspects of
the software project. This is limited, however, to
instances where incomplete information is available to
project managers in the real world, such as in trying to
determine the number of errors present in a software
product.

4.3 Failure

The goal of the simulator is for the student, in their role
as the project manager, to develop a software project
within the required time and budget, and of reasonable
quality. Balancing the project drivers of budget and
delivery time with product quality is one of the most
difficult tasks for a project manager in the real world
(Boehm, 1996 in Rus and Collofello, 1999).

This goal is enforced by ending the game when the
project is 100% complete, or when the player runs out of
either money or time.

The main way in which students are expected to fail is
through the creation of a project that is of unacceptable
quality. As the number of defects in the imaginary
software product is only made available to players
through a rough estimation — and even then only if such
an estimation is requested — it is expected that many
students will fail to detect and correct enough defects to
pass the quality threshold. Secondly, the amounts of
money and time provided to students have been set at a
low level so that they must be balanced carefully in order
for the project to succeed. The combination of these
factors should ensure that most students will fail on their
first attempt at developing a software product in the
simulation game. It is hoped that this will increase not
only their desire to ‘master’ the process, but also to
understand its requirements and the degree to which these
may be influenced.

www.manaraa.com

4.4 The Employees

One of the student’s tasks is to manage their development
team. Each developer is implemented as an autonomous
entity within the simulation.

A developer’s name, their skills, personality, and cost are
all set at the beginning of the simulation. These properties
have been assigned so that each of the developers in the
simulation has strengths in different areas. For example,
one developer may have high skills in the areas of
analysis and design, but have poor coding and testing
abilities.

Developers start with no experience. Their initial location
is that of home, their state is set to being idle — and
although they are yet to be employed, their hardware and
software is functional.

One of the main abilities of a developer is the ability to
decide what task to perform next — from a basic choice
of work, communicate, or drink coffee. Initially, a
process of elimination is conducted to determine if there
is the possibility that the developer should do work. If
their current state predisposes activities other than work,
such as if they are not assigned to a task, then the
developer will simply go and drink coffee or visit the
drinks machine.

Alternatively, if work is possible, a stochastic factor is
calculated to determine the developer’s next task. This is
calculated so that the higher the number of developers
working on the project, the greater chance there is that the
developer will need to communicate with another
developer. Outside of this possibility, the developer will
either choose to work on their current software
development activity, or based on their personality factor
may choose to go and drink coffee rather than do work.

Regardless of the outcome of the decision, once a
developer’s next task has been determined, operations
must exist so that they can carry out the desired activity.
For this purpose, developers have several activites that
require the student to interact with them. These include
allowing the student to hire, fire, train, and assign the
developer to software development tasks. Training a
developer results in raising their skills by a small
stochastic amount, at a cost of time and money to the
project.

When working on their currently assigned task, the
amount of time that they work is determined
stochastically. The amount of work that they get done in
this time, however, is determined directly by their
appropriate skills and experience. For example, assuming
neither developer has accumulated any experience yet,
one developer with a skill level of 50% may accomplish 6
units of work in 12 hours, whilst another with a skill level
of only 25% will most likely accomplish only 3 units of
work. Experience has a similar effect but is valued more
lowly than skills in the calculation of the quantity of work
that a developer will accomplish. This leads to the effect
that when a developer starts work on the project, their
skills are the dominating factor, whilst later on in the
project their experience has a greater influence on the
amount of work they can achieve.

4.5 Managing Employees

4.5.1 Jurisdiction

Students, as the project managers, interact with many
other aspects of the simulation. These include the ability
to:

* hire, train, and fire developers;

+ change the percentage of time that is allocated to
validation and verification activities;

+ call a meeting;

» assign a developer to a software development task
or to estimate the errors in a project;

e withdraw a task;

+ extend the completion date, reduce the size or
increase the budget of the project; and

* purchase hardware or software for one of their
developers.

4.5.2 Control Panels

Interaction occurs via control panels which occupy the
lower half of the simulation screen (see Figure 4).

The project control panel of SimjavaSP, illustrated in
Figure 2, is designed to display the relevant process and
product attributes to the user. It consists of a development
stages tree, progress bars for time, size and budget,
general project action buttons and a slider that allows the
user to allocate effort to validation and verification
activities.

[Development Stages Money | | [=10% |
Analysis
% Desi\’fgn Size [0% T
[coding Time | | [=20% |
[y Testing _ % of Time on V&Y
[y Documentation EstimateErrors | =
[y Delivery [CallMeeting | 1 26 51 76

Figure 2. The Project Control Panel from SimjavaSP

As shown in Figure 3, the developer control panel allows
the developers in SimjavaSP to be investigated and
controlled by the student. The functions offered by the
simulation game are intended to correspond with the
actions that a project manager could take in a real
software project. Therefore the interface allows the
player, as the project manager, to be entirely responsible
for planning, staffing, directing, and controlling.

Personality | | | Train |
Cost | | | Fire |
= N Analysis 45 Coding 24 Document 15
i ,‘ - Design 20 Testing 56
[Kiki ¥ | [Reguirements Analysis(40) | [Hardware -

Assign

Figure 3. The Developer Control Panel from SimjavaSP

The developer control panel works in combination with
the project control panel to allow the player access to a
range of project management actions. An example of
such actions is provided by Abdel-Hamid and Madnick

www.manaraa.com

(1989), who note that management actions when a project
is behind schedule include revising the completion date,
or hiring more staff. A player in SimjavaSP is able to
carry out both of these actions — the project control
panel allows the project deadline to be extended, and use
of the developer control panel allows more staff to be
hired.

5 Evaluation

5.1

In order to investigate students’ opinions of the software
process simulation game — as well its value as a teaching
tool — an experiment was conducted in which
participants played SimjavaSP for a period of time and
then completed a twenty-question questionnaire.

Investigation

The questions in the survey were devised to address each
item of interest through two or three questions. The
survey questions can be divided into the following
categories:
* participant demographics;
e opinions on the simulator itself;
 opinions on software development life cycles;
» achievement of learning and knowledge acquired
through the simulation; and
 the usefulness of the simulator as a teaching tool,
particularly for the KXA 154 Sofiware Process unit.

5.2 Results

One of the aims of the experiment was to determine the
students’ opinions of SimjavaSP. To this purpose a series
of questions were included in the survey about the
simulator itself.

1. How enjoyable is it to play?

% of participants
N
(4]

10 1 —
51 :‘77
0 T T T

very very
enjoyable unenjoyable

Figure 4. Graph Showing Responses to Question 1

The answers to one such question (Question 1) are
summarised in the graph of Figure 4. A significant
number of respondents found the simulation game
enjoyable to play, with over 20% stating that it was “very
enjoyable”, and only 11% rating it as unenjoyable. This is
a very positive indication of the game’s ability to interest
students, and support the researcher’s observations that
students for the most part seem to find SimjavaSP
intrinsically motivating.

The second question in the survey aimed to find out how
difficult or easy SimjavaSP is to play. As illustrated in
FigurensSyrarmixedrresponserwasiteceived with most

participants indicating that the game was somewhat easy
to play, but with a significant amount reporting that it was
difficult.

2. How difficult/easy is it to play’

% of participants
N
o

very easy very
difficult

Figure 5. Graph Showing Responses to Question 2

This diverse response is most likely due to a combination
of several factors. Firstly, it is probable that the
participants ranged in ability and background, and
therefore what is an easy game for some was difficult for
others. It is also possible that a lack of clarity in the
question is responsible for the variety of answers. The
question may have been interpreted as:

+ asking how difficult the simulator is to use (which
was the intent of the question); or

 asking how difficult it is to successfully complete a
project.

A third indication of SimjavaSP’s ability to teach was
obtained by asking students for their opinions on how
well the simulator teaches the process of software
development. The answers are summarised in the graph
of Figure 6.

5. How well does it teach the process of software
development?

60 -

o
o

IS
o

N
o

% of participants
w
o

o

1T

very well

o

very poorly

Figure 6. Graph Showing Responses Received to
Question 5

Whilst 67% of students indicated that they thought that
SimjavaSP was able to teach the software development
life cycles well, other students were not as positive.
Again this indicates an area in which the simulation game
could be improved.

6 Conclusions and Further Work

6.1 Conclusions

There is a clear qualitative indication that students enjoy
learning through playing this simulation game. Students
reported that playing the game was entertaining, and

www.manaraa.com

therefore it can be said to be providing them with intrinsic
motivation. This finding was strengthened by one of the
researcher’s observations of students playing the game.

Secondly, it has been shown that students are able to
benefit from the experience of playing the simulation
game. Students were successfully able to identify the
reasons why their simulated project had failed or
succeeded, and in the case of failure determine a strategy
that would allow them to avoid this in the future.
Learning from experience in this way shows that the
simulation is providing students with enough feedback
for them to achieve experiential learning of the software
development process.

The results also indicate that students are able to acquire
software process knowledge from SimjavaSP. Its main
strength in this area is in reinforcing knowledge of the
software development process taught in the KXA154
Software Process unit. The results indicate that it is also
able to teach new knowledge reasonably well.

Finally, there is also a clear qualitative indication that
SimjavaSP is suitable as a software development process
teaching tool, particularly at the introductory level.
Overall, the reaction to the game as a teaching tool was
very positive, with students indicating that whilst they did
not think it should be a mandatory part, it should
definitely be incorporated into the KXA154 Software
Process unit as an optional part or as an alternative to one
of the current tutorials. The reader is referred to (Shaw,
2003) for more information.

6.2 Further Work

The simulator could be modifed to allow now-hidden
calculations (such as defect calculations) to be seen by
the students. The simulation could then be used as an
introduction in a tutorial, for example, in which students
use SimjavaSP in order to observe how the number of
defects present is calculated at each stage of the project,
before attempting to perform the calculations themselves.
Not only would this provide an interesting activity for
students, it would also provide an example of the
application of theory to the real world.

A second enhancement that could be made to SimjavaSP
is the extension to include more software development
process models. Furthermore, the educational value of the
game could be increased by extending it to incorporate
multiplayer simulation, as this could provide academic
and social motivation through competitive and
collaborative play respectively.

7 References

Abdel-Hamid, T. and Madnick S. (1989): Lessons learned
from modeling the dynamics of software development.
Communications of the ACM, ACM Press, 32(12): pp.
1426-1438.

Andrianoff, S. and Levine, D. (2002): Role Playing in an
Object-Oriented World. Proceedings of the 33rd
SIGCSE Technical Symposium on Computer Science
Education, Kentucky, USA. ACM Press, pp. 121-125.

Barrett, M. L. (1997): Simulating Requirements
Gathering. Proceedings of the 28th SIGSCE Technical
Symposium on Computer Science Education, San Jose,
California, USA, pp. 310-314.

Bernstein, L. and Klappholz, D. (2001): Getting Software
Engineering Into Our Guts. CrossTalk: The Journal of
Defense Software Engineering July 2001: pp. 25-26.

Bernstein, L. and Klappholz, D. (2003): Personal
communication, 8" April 2003.

Biggs, J. (1999): Teaching for Quality Learning at
University. Buckingham, Open University Press.

Biggs, J. and Moore, P. (1993): The Process of Learning.
New Jersey, Prentice Hall.

Boehm, B. (1988): A Spiral Model of Software
Development and Enhancement. Computer 11(4): pp.
61-72.

Boud, D., Keogh, R., and Walker, D. (1985): Reflection:
Turning Experience Into Learning. London, Kogan
Page.

Briggs, J. (1994): Do Students Want to Engineer
Software? Sofiware Engineering in Higher Education.
In King, G., Brebbia, C., Ross, M., and Staples, G.
(Eds.). Southampton, Computational Mechanics
Publications.

Carswell, L. and Benyon, D. (1996): An Adventure Game
Approach to Multimedia Distance Education.
Proceedings of the Ist Conference on Integrating
Technology into Computer Science Education,
Barcelona, Spain, ACM Press, pp. 122-124.

Cope, C. and Horan, P. (1996): The Role Played Case:
An Experiential Approach to Teaching Introductory
Information Systems Development. Journal of
Information Systems Education On-line 8(2): pp.
33-39.

Dawson, R. (2000): Twenty Dirty Tricks to Train
Software Engineers. Proceedings of the 22nd
International Conference on Software Engineering,
Limerick, Ireland, ACM Press, pp. 209-208.

Drappa, A. and Ludewig, J. (2000): Simulation in
Software Engineering Education. Proceedings of the
22nd International Conference on Software
Engineering, Limerick, Ireland, ACM Press, pp.
199-208.

Goldwasser, M. (2002): A Gimmick to Integrate Software
Testing Throughout the Curriculum. Proceedings of the
33rd SIGCSE Technical Symposium on Computer
Science Education, Kentucky, USA, ACM Press, pp.
271-275.

Howell, F. and McNab, R. (1998): A Discrete Event
Simulation Package for Java with Applications in
Computer Systems Modelling. Proceedings of the First
International Conference on Web-based Modelling and
Simulation, San Diego, USA.

Humphrey, W. (1995): A Discipline for Software
Engineering. Massachusetts, Addison-Wesley.

www.manaraa.com

Ju, E. and Wagner, C. (1997): Adventure Games: Their
Structure, Principles, and Applicability for Training.
The Database for Advances in Information Systems
28(2): pp. 78-92.

Kolb, D. (1984): Experiential Learning. New Jersey,
Prentice-Hall Inc.

Kolesnik, W. (1978): Motivation. Boston, Allyn and
Bacon.

Malone, T. (1980): What makes things fun to learn?
Heuristics for Designing Instructional Computer
Games. Proceedings of the 3rd ACM SIGSMALL
Symposium and the First SIGPC Symposium on Small
Systems, Palo Alto, California, USA, ACM Press, pp.
162-169.

Mandl-Striegnitz, P. (2001): How to Successfully Use
Software Project Simulation for Educating Software
Project Managers. Proceedings of the 31st Frontiers in
Education Conference, Nevada, USA.

Mandl-Striegnitz, P., Drappa, A., and Lichter, H. (1998):
Simulating Software Projects — An Approach for
Teaching Project Management. Proceedings of the
INSPIRE III: Process Improvement Through Training
and Education, London, UK, pp. 87-98.

McCauley, R., and Jackson, U. (1998): Teaching
Software Engineering Early — Experiences and
Results. Proceedings of the Frontiers in Education
Conference, Arizona, USA, IEEE Computer Society,
pp- 800-804.

Merrill, D., and Collofello, J. (1997): Improving Software
Project Management Skills Using a Software Project
Simulator. Proceedings of the 1997 Frontiers in
Education Conferece, Pittsburgh, USA, pp. 1361-1366.

Morell, L., and Middleton, D. (2001): The Software

Engineering Learning Facility. The Journal of

Computing in Small Colleges 16(3): pp. 299-307.

Oh, E. (2002): Teaching Software Engineering Through
Simulation. Proceedings of the International
Conference on Software Engineering, Orlando, Florida,
USA.

Oh, E., and Van der Hoek, A. (2001a): Adapting Game
Technology to Support Individual and Organisational
Learning. Proceedings of the 13th International
Conference on Software Engineering and Knowledge
Engineering, Buenos Aires, Argentina.

Oh, E., and Van der Hoek, A. (2001b): Challenges in
Using an Economic Cost Model for Software
Engineering Simulation. Proceedings of the 3rd
International Workshop on Economics-Driven
Software Engineering Research, Toronto, Canada.

Pfleeger, S. (1998): Software Engineering: Theory and
Practice. London, Prentice-Hall International.

Polack-Wahl, J. (1999): Incorporating the Client’s Role
in a Software Engineering Course. Proceedings of the
30th SIGSCE Technical Symposium on Computer
Science Education, Los Angeles, USA, ACM Press, pp.
73-77.

Robergé, J., and Suriano, C. (1994): Using Laboratories
to Teach Software Engineering Principles in the
Introductory Computer Science Curriculum.
Proceedings of the 25th SIGSCE Symposium on
Computer Science Education, Arizona, ACM Press, pp.
106-110.

Rus, I., and Collofello, J. (1999): Software Process
Simulation for Reliability Strategy Assessment.
Journal of Systems and Software, 46(2): pp. 173—182.

Schriber, T., and Brunner, D. (1998): Inside Discrete-
Event Simulation Software: How It Works and Why It
Matters. Proceedings of the 1998 Winter Simulation
Conference, Washington DC, USA, pp. 77-86.

Seila, A. (1995): An Introduction to Simulation.
Proceedings of the 1995 Winter Simulation
Conference, December 3—-6, 1995, Arlington, VA,
USA, ACM, pp. 7-15.

Sharp, H., and Hall, P. (2000): An Interactive Multimedia
Software House Simulation for Postgraduate Software
Engineers. Proceedings of the 22nd International
Conference on Software Engineering, Limerick,
Ireland, ACM Press, pp. 688—691.

Shaw, K. (2003): Experiential Learning of the Software
Development Process through a Web-Based Simulation
Game. Honours Thesis. School of Computing,
University of Tasmania, Australia.

Simsarian (2003): Take it to the Next Stage: The Roles of
Role Playing in the Design Process. Proceedings of the

Conference on Human Factors and Computing
Systems, Florida, USA, ACM Press, pp. 1012—-1013.

Wickenberg, T. and Davidsson, P. (2002): On Multi
Agent Based Simulation of Software Development
Processes. Proceedings of the 2" Conference on Mullti-
Agent Based Simulation, Bologna, Italy, pp. 171-180.

www.manaraa.com

